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Introduction

There has been a recent surge in statistical methods for han-
dling the lack of adequate positivity when using inverse probability
weighted (IPW) estimator. However, these nascent developments
have raised a number of questions.

Thus, we demonstrate the ability of equipoise estimators (over-
lap, matching, and entropy weights) to handle the lack of positiv-

Ity.
« To infer causality, what are they really estimating and what are
their target populations?

« We specifically look into the impact imbalances in treatment al-
location can have on the positivity and, ultimately, on the esti-
mates of the treatment effect.

Setup

« Treatment: Z € {0, 1}; covariates vector: X; potential outcome:
Y(z), z=0,1; observed outcome: Y =ZY(1)+ (1 —Z)Y(0); PS:
e(x)=P(Z=1|X =x)

« Common assumptions in causal inference literature are made:
SUTVA, consistency, positivity (overlap), unconfoundeness. The
positivity assumption is the heart of research here, which stated
that 0 <e(X) <1 w.p.l.

What are we weighting for?

We assessed the impact of proportion of the treated participants
p=P(Z=1)=E{e(X)} to the relationship of equipoise estima-
tors, ATE, ATT and ATC estimators.

First, clearly ATE = pATT + (1 — p)ATC. Second,

e when e(x) = 0.5, (e(x),1 —e(x)) ~ (lﬂ-gfx), (e)é;) (ATE weights)

e(x)
1—e(x)

e when e(x) is small, (e(x),1 —e(x)) = ( : 1) (ATT weights)

« when e(x) is large, (e(x),1 —e(x)) ~

)
Our hunch is that under some conditions, p might be sufficient to

reflect how ATO weights ATT and ATC.

(1,5552) (ATC weights)

Simulation findings

We generated some observational data under common assump-
tions, and we vary p = P(Z = 1) via the following 3 PS models.
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We have the following main simulation findings.
In following 2 figures, A: Hajek-type (weighted) estimator; B (resp. C, D, and E): augmented
estimator, with both the PS and OR models correctly specified (resp. only the PS model correctly

specified, only the OR model correctly specified, both the PS and OR models misspecified).
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« Augmented estimators for ATO, ATM and ATEN are more robust
to model misspecifications than that of ATE and ATE trimming. In
addition, the Hajek-type estimator of equipoise effects has been
proved more robust than that of ATE [2], so we did not further
investigate it here.

- Coverage probabilities (CP) of equipoise estimators are closer to
the nominal 95% level. While trimming shows to have a good
bias-variance trade-off, their variance estimations overestimate
the efficiency from their poor CPs.

Analysis of racial disparities in health care expenditure

We evaluate racial disparities in the health care expenditure using
data from the Medical Expenditure Panel Survey (MEPS). We focus
on three specific 2-by-2 comparisons: White vs. Hispanic, White
vs. Black, and White vs. Asian, with White as the reference group
(Z = 1) and the minority racial or ethnic group as control (Z = 0).
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