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Overview

The positivity assumption plays a key role in identification of causal
effects in observational studies.

Each participant should have non-zero subject-specific probability to
receive either treatment or control.

▶ In randomized trials, this probability is known by design.
▶ In observational studies, we have to model and estimate this

probability subject-specifically.

In this talk, we focus on the positivity violation when the interest is
identifying the average treatment effect on the treated (ATT), i.e.,

E{treatment effect | participants who received the active treatment}.
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Overview

Literature often defines two types of violation of positivity.1

Random violation: due to chance, small sample size, model
misspecifications, etc.

Structural violation: due to the inherent characteristics of the target
population.

▶ ATT is technically not identifiable.

We proposed a method that addressed both violations.

1Petersen, M. L. et al. Diagnosing and responding to violations in the positivity assumption. Statistical methods in medical
research 21, 31–54 (2012).
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Notations and Definitions

We assume the full-data of an observational study are from a
super-population model f (x , z, y(0), y(1)).

X : covariate; Z ∈ {0,1}: binary treatment; Y (0) and Y (1): two potential
outcomes.

However, for each participant, we can only observe the outcome
associated with their received treatment Z , i.e., Y = Y (Z ).

Assume also Y (z) ⊥⊥ Z | X for both z = 0,1.

Positivity: the propensity score e(X ) = P(Z = 1 | X ) (a subject-specific
score) must satisfy 0 < e(X ) < 1 w.p.1.

Or strict positivity2: 0 < c1 ≤ e(X ) ≤ c2 < 1 w.p.1. for some constants
c1 and c2.

2Hirano, K. et al. Efficient estimation of average treatment effects using the estimated propensity score. Econometrica 71,
1161–1189 (2003), D’Amour, A. et al. Overlap in observational studies with high-dimensional covariates. Journal of Econometrics
221, 644–654 (2021).
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Positivity violation example

Extreme propensity scores: NC birth weights data3

3Zhou, Y. et al. Propensity score weighting under limited overlap and model misspecification. Statistical Methods in Medical
Research 29, 3721–3756 (2020).
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Trimming or truncating extreme weights

Two common practices for excluding/capping extreme weights:

Trimming: exclude participants with estimated e(X ) outside a range
[c1, c2], where 0 < c1 < c2 < 1.

Truncation: a weight capping, i.e., assign c1 as the new propensity score
to those e(X ) < c1 and c2 to those e(X ) > c2.

Moving the goalposts...
In fact, they moved the target of inference (goalposts).4 For example, the
trimming targets O(X ) = {X : c1 ≤ e(X ) ≤ c2} ⊂ full support.

4Crump, R. et al. Moving the goalposts: Addressing limited overlap in the estimation of average treatment effects by changing
the estimand. 2006.
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Average treatment effect on the treated (ATT)

ATT is defined by
τatt = E{Y (1)− Y (0) | Z = 1} = E{Y | Z = 1} − E{Y (0) | Z = 1}.

Y (0) is missing (unobserved) for Z = 1.

We can re-write ATT using the propensity score e(X ):

τatt =
E(ZY )

E(Z )
− E{w0(X )(1 − Z )Y}

E{w0(X )(1 − Z )}
,

where w0(X ) =
e(X )

1 − e(X )
.

Extreme weights occur when e(X ) ≈ 1 on control participants.
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Moving the goalposts: weighted ATT (WATT)

The WATT is defined by:

τh
watt =

E(ZY )

E(Z )
− E {ω0h(X )(1 − Z )Y}

E{ω0h(X )(1 − Z )}
, with ω0h(x) = w0(x)h(x) =

e(x)h(x)
1 − e(x)

.

h(x) is a tilting function. It generalizes the weights on control and thus
generalizes the estimand.

A weighting estimator for ATT:

τ̂h
watt =

∑N
i=1 ZiYi∑N

i=1 Zi
−

∑N
i=1(1 − Zi)ω̂0h(Xi)Yi∑N

i=1(1 − Zi)ω̂0h(Xi)
.

The idea of defining this WATT is motivated by the idea of weighted
average treatment effect (WATE).5

5Hirano, K. et al. Efficient estimation of average treatment effects using the estimated propensity score. Econometrica 71,
1161–1189 (2003).
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Overlap weighted ATT (OWATT)

A: h(x) vs. e(x), and B: weights ω0h(x) on the controls.

0.00

0.25

0.50

0.75

1.00

0.0 0.2 0.4 0.6 0.8 1.0
Propensity score

T
ilt

in
g 

fu
nc

tio
n

A

0

5

10

15

20

0.0 0.2 0.4 0.6 0.8 1.0
Propensity score

W
ei

gh
t

B

ATT

Smooth ATT trimming (0.10; 0.01)

ATT trimming (0.10)

Smooth ATT trimming (0.10; 0.05)

OWATT

ATT truncation (0.10)

The purple curves correspond to h(x) = e(x){1 − e(x)} (overlap function).6

We call the WATT when choosing the overlap function as the tilting functions
by “overlap weighted ATT (OWATT)”.

6Li, F. et al. Balancing covariates via propensity score weighting. Journal of the American Statistical Association 113, 390–400
(2018).
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Inference
Assuming we use a GLM for the propensity score e(x) = e(x ′β), the estimator τ̂ h

watt is
regular and asymptotic linear (RAL), with

√
N(τ̂ h

watt − τ h
watt) →d N (0, σ2 + b′

1I(β∗)−1b1 − b′
2I(β∗)−1b2),

where σ2 =
1∑

z=0

E
{
ηz(X ){µ{z, e(X )}2 + σ2{z, e(X )}+ σ2(z,X )}

}
with

η1(X ) =
e(X )

E{e(X )}2 , η0(X ) =
ω0h(X )2{1 − e(X )}

E{e(X )h(X )}2 ,

µ{z, e(X )} = E{Y | e(X ),Z = z},

σ2{z, e(X )} = var{Y | e(X ),Z = z},

σ2(z,X ) = var{Y | X ,Z = z}, for z = 0, 1,

where I(β∗) is the Fisher’s information matrix of β, with β∗ the truth of β, and

b′
1 = E

{
∂

∂β′

[
e(X ′β∗)

E{e(X ′β∗)}

]
µ(1,X )− ∂

∂β′

[
e(X ′β∗)h(X ′β∗)

E{e(X ′β∗)h(X ′β∗)}

]
µ(0,X )

}
,

b′
2 = E

{[
E{Xµ(1,X ) | e(X )}

E{e(X )} +
ω0h(X )E{Xµ(0,X ) | e(X )}

E{e(X )h(X )}

]
f (X )

}
.
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Inference

Remarks:

The asymptotic linearity allows the use of bootstrap for variance
estimation.

In the asymptotic variance term, η0(X ) =
ω0h(X )2{1 − e(X )}

E{e(X )h(X )}2 . Thus,

▶ when h(x) ∝ 1 (ATT), η0(X ) ∝ e(x)2/{1 − e(x)}, which can still be
extreme.

▶ when h(x) ∝ e(x){1 − e(x)} (OWATT), η0(x) ∝ e(x)4{1 − e(x)},
which is always bounded.
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Inference

We demonstrated that, when the propensity score is possibly misspecified
and converges to a limit ẽ(x), the asymptotic biases of estimating ATT and
OWATT are, respectively,

ABias(τ̂att) =
E{e(X )m0(X )}

E{e(X )}
−

E
{

ẽ(X )

1 − ẽ(X )
{1 − e(X )}m0(X )

}
E
{

ẽ(X )

1 − ẽ(X )
{1 − e(X )}

} ,

ABias(τ̂owatt) =
E{e(X )2{1 − e(X )}m0(X )}

E{e(X )2{1 − e(X )}}
−

E
{

ẽ(X )2{1 − e(X )}m0(X )
}

E
{

ẽ(X )2{1 − e(X )}
} .

The teal parts can incur extreme values when ẽ(x) → 1.
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Simulation study

We conducted a simulation study with propensity score model such that the
overlap is as follows. There are some extreme weights by this model.

14 / 20



Simulation study
Boxplots of relative biases:
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Racial disparities in health care expenditure

Data from the Medical Expenditure Panel Survey (MEPS):
https://www.meps.ahrq.gov/mepsweb/

We include 11276 individuals, with 9830 (87.18%) non-Hispanic White
as treated and 1446 (12.82%) Asian as control. We included 31
covariates, and considered the health care expenditure as the outcome
of interest.
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Racial disparities in health care expenditure
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Discussion

Summary

We proposed overlap weighted ATT (OWATT) under lack of positivity, as
an alternative to ATT.

OWATT has some practical advantages:

▶ No selection on any threshold parameters.
▶ Makes use of information from all samples.
▶ Statistically sound and efficient under lack of positivity.

Limitation

We may require some relatively strong assumptions on the propensity
score estimation for our method, but we also demonstrated that under
lack of positivity, when the propensity score is misspecified, OWATT is
more robust.

Future research

Augmented estimator, sandwich variance estimation, extensions to
multi-valued treatment data, survival data, etc.
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Thank you!

Email: yliu297@ncsu.edu

https://yiliu1998.github.io/
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